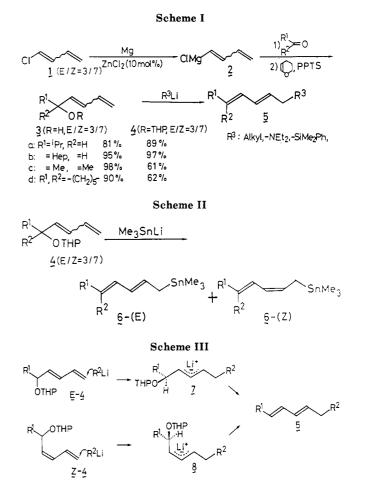
forming some initial experiments. Financial support was obtained from the National Swedish Board for Technical Development.

Registry No. 1, 40036-82-6; 2a, 63753-76-4; 2b, 109929-30-8; 3, 109929-31-9; 4a, 109929-32-0; 4b, 109929-33-1; 5a, 109150-98-3; 5b, 109150-76-7; 7, 109929-35-3; 10, 109929-34-2; Ph₃P= CHCOOEt, 1099-45-2; CMP-KDO synthetase, 37278-28-7.

(20) Present address: R&D Laboratories, Astra Alab, S-151 85 Södertälje, Sweden.

Alf Claesson²⁰


Department of Organic Pharmaceutical Chemistry Uppsala Biomedical Center S-751 23 Uppsala, Sweden Received April 1, 1987

A Facile Stereoselective Synthesis of Internal Conjugated (E,E)-Dienes Including 2,4-Alkadienylamines, -silanes, and -stannanes

Summary: Tetrahydropyranyl ethers of 2,4-alkadien-1-ols, prepared by the reaction of 1,3-butadienylmagnesium chloride with carbonyl compounds, are regioselectively attacked on the C-5 position by various lithium reagents, such as RLi, R_2 NLi, R_3 SiLi, and R_3 SnLi, under the elimination of lithium tetrahydropyranyl oxide, giving the corresponding (E,E)-dienes predominantly.

Sir: Regio- and stereoselective synthesis of conjugated dienes has received considerable attention for these decades because these dienes are important both for building blocks of natural products and for components of Diels-Alder reactions.^{1,2} Although various reactions including Wittig reaction^{2d} as well as transition-metal-catalyzed cross-coupling reaction between alkenylmetals and alkenyl halides have been commonly used,³ more versatile method for synthesis of conjugated dienes bearing various types of substituents have been needed. This paper describes a novel highly stereoselective synthesis of internal conjugated (*E,E*)-dienes from easily accessible 1-chloro-1,3-butadiene,⁴ a carbonyl compound, and a lithium reagent as shown in Scheme I.

The Grignard reagent 2 was prepared from 1-chloro-1,3-butadiene (1) (E/Z = 3/7) and magnesium in the presence of zinc(II) chloride.⁵ Treatment of a ketone or

an aldehyde with 2 gave dienyl alcohol 3 in excellent yield which was converted into tetrahydropyranyl (THP) ether 4 by pyridinium *p*-toluensulfonate (PPTS) catalyst.⁶ Among various organometallic reagents, alkyllithiums attacked regioselectively on the end of diene unit and afforded internal conjugated dienes 5.⁷ Lithium amide and silyllithium reacted also with 4, affording 2,4-alkadienylamines⁸ and 2,4-alkadienylsilanes,⁹ respectively. Results are summarized in Table I.

Typical procedure for the formation of Grignard reagent 2 and successive transformation to conjugated dienes 5 is as follows. A mixture of magnesium (24 g, 1.0 mol) and zinc(II) chloride (6.8 g, 0.05 mol) were heated at 130 °C for 2 h under vacuum. Dried tetrahydrofuran (THF, 30 mL) and 1,2-dibromoethane (2.0 mL) were added, and the whole was stirred vigorously under an argon atmosphere.

(10) Gilman, H.; Lichtenwalter, G. D. J. Am. Chem. Soc. 1958, 80, 608.

^{(1) (}a) Nozoe, S. Natural Products Chemistry; Nakanishi, K., Ed.; Kodansha: Tokyo, 1975; Vol 2, pp 1-86. (b) Clark, T.; McKervey, Comprehensive Organic Chemistry; Barton, D., Ed.; Pergamon: Oxford, 1979; Vol 1, pp 101-105.

^{(2) (}a) For general review, see: Norman, J. F. Modern Synthetic (2) (a) For general review, see: Norman, J. F. Modern Synthetic Methods; Scheffold, R., Ed.; Verlag, O. S.; Berlin, 1983; pp 139-172. (b) Otera, J.; Misawa, H.; Sugimoto, K. J. Org. Chem. 1986, 51, 3830. (c) Yamada, S.; Ohsawa, H.; Suzuki, T.; Takayama, H. J. Org. Chem. 1986, 51, 4934. (d) Schlosser, M.; Tuong, H. B.; Scaub, B. Tetrahedron Lett. 1985, 26, 311. (e) Ikeda, Y.; Ukai, J.; Ikeda, N.; Yamamoto, H. Tetrahedron 1987, 43, 723, 731.

^{1985, 25, 311. (}c) 1keda, Y.; Ukal, J.; Ikeda, IV., Falianioto, R. Ferrahedron 1987, 43, 723, 731.
(3) (a) Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958. Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144. (b) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (c) Miyaura, N.; Suginome, H.; Suzuki, A. Tetrahedron Lett. 1983, 24, 1527.
(d) Diek, H. A.; Heck, R. F. J. Org. Chem. 1975, 40, 1083. (e) Larock, R. C. J. Org. Chem. 1976, 41, 2241. (f) Kanemoto, S.; Matsubara, S.; Oshima, K.; Utimoto, K.; Nozaki, H. Chem. Lett. 1987, 5 and references cited therein.

^{(4) 1-}Chloro-1,3-butadiene, a byproduct in the industrial process of producing chloroprene, was offered from Toyo Soda Manufacturing Co. Ltd.

⁽⁵⁾ The preparation of this reagent 2 has not been reported. The method is an analogue to the preparation of Grignard reagent from chloroprene; see: Sultanov, N. T.; Mekhtiev, S. D.; Efedieva, T. G.; Kodzhaova, S. Y.; Aleieva, M. A.; Mamedov, F. A. USSR Patent 280 476, 1970; Chem. Abstr. 1971, 74, 142040. Kondo, K.; Dobashi, S.; Matsumoto, M. Chem. Lett. 1976, 1077. Nunomoto, S.; Yamashita, Y. J. Org. Chem. 1979, 44, 4788.

⁽⁶⁾ Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772.

⁽⁷⁾ The reaction of methylmagnesium bomide with 4 in the presence of catalytic amount of CuI or Ni(PPh₃)₂Cl₂ also gave diene 5. But the yield was low (<20%).

⁽⁸⁾ Decodts, G.; Dressaire, G.; Langlois, Y. Synthesis 1979, 510. Alexakis, A.; Norman, J. F. Tetrahedron Lett. 1982, 23, 5151. Nikaido, M.; Aslanian, R.; Scavo, F.; Helquist, P.; Åkermark, B.; Bäckvall, J.-E. J. Org. Chem. 1984, 49, 4738. Meyers, A. I.; Lawson, J. P.; Carver, D. R. J. Org. Chem. 1981, 46, 3119.

⁽⁹⁾ Seyferth, D.; Pornet, J. J. Org. Chem. 1980, 45, 1721. Yasuda, H.; Yamauchi, M.; Ohnuma, Y.; Nakamura, A. Bull. Chem. Soc. Jpn. 1981, 54, 1481. Yasuda, H.; Nishi, T.; Lee, K.; Nakamura, A. Organometallics 1983, 2, 21.

Table I. Reaction of Alkyllithium, Lithium Amide, an	id Silyllithium with THP l	Ether 4
--	----------------------------	---------

			reaction conditions		$\mathbf{product}^{b}$			
run	THP ether	R ³ Li	temp, °C	time, h	R1	\mathbb{R}^2	\mathbb{R}^3	yield, %°
1	4a	n-BuLi	-78	5	<i>i</i> -Pr	H	n-Bu	89
2	4a	sec-BuLi	-78	1	<i>i</i> -Pr	н	$sec extsf{-Bu}$	74
3	4b	n-BuLi	-78	6	n-Hep	н	n-Bu	85
4	4b	t-BuLi	-78	6	n-Hep	н	t-Bu	76
5	4c	n-BuLi	-78	7	Me	Me	<i>n</i> -Bu	78
6	4d	n-BuLi	-78	6	(CH	$(2)_{5}$	<i>n</i> -Bu	93
7	4a	Et_2NLi	0	5	<i>i</i> -Pr	Н	NEt_2	74
8	4c	Et_2NLi	0	7	Me	Me	NEt_{2}	76
9	4 d	$\tilde{\mathrm{Et}_{2}}\mathrm{NLi}$	0	7	(CH	2)5	NEt_2	96
10	4a	$PhMe_2SiLi^d$	-78	0.5	<i>i</i> -Pr	Г Н	$\tilde{SiMe_2Ph}$	85
11	4b	$PhMe_2SiLi^d$	-78	0.5	n-Hep	Н	$\tilde{SiMe_2Ph}$	81
12	4c	$PhMe_2SiLi^d$	-78	0.5	Me	Me	$SiMe_2Ph$	90
13	4d	$PhMe_2SiLi^d$	-78	0.5	(CH	2)5	$SiMe_2Ph$	78

^a THF ether (2.0 mmol), R ³ Li (6	3.0 mmol), and THF (10 mL) were employed. b Isomeric purities (>95%) were determined by GLPC	,
and/or ¹ H NMR. ^c Isolated yields.	^d THP ether (2.0 mmol), PhMe ₂ SiLi ¹⁰ (2.4 mmol), and THF (10 mL) were employed.	

Table II. Preparation of Dienyls	stannane 6ª
----------------------------------	-------------

		product					
run	THP ether	$\overline{\mathbb{R}^1}$	\mathbb{R}^2	(E)-/(Z)-6	(E)-6	(Z)-6	yield, %°
1	4a	<i>i</i> -Pr	Н	75/25	+0.6	+6.2	66
2	4b	n-Hep	Н	74/26	+0.5	+4.8	61
3	4c	Me	Me	71/29	-2.0	+2.2	53
4	4d	(CH	2) ₅	71/29	-1.1	+4.4	65

^a THP ether (2.0 mmol), Me₃SnLi¹³ (6.0 mmol), and THF (10 mL) were employed. ^b The chemical shifts are given in δ with tetramethylstannane as an internal standard. ^cIsolated yields.

After exothermic reaction subsided, the reaction mixture was diluted by additional THF (350 mL), and then a solution of 1-chloro-1,3-butadiene (1; 44 g, 0.5 mol) and 1,2-dibromoethane (4 mL) in THF (70 mL) was added dropwise over 1 h. After the exothermic reaction was over, the whole was heated under reflux for 2 h. A concentration of the resulting solution of 2 was determined by usual manner.¹¹ A THF (5 mL) solution of 2-methylpropanal (0.72 g, 10 mmol) was treated with 2 (0.45 M, 27 mL, 12.5 mmol) at 0 °C for 30 min. After the usual workup and purification by silica gel column chromatography, dienyl alcohol 3a (1.02 g, 8.1 mmol) was obtained in 81% yield. A treatment of 3a with 3,4-dihydro-2H-pyran and a catalytic amount of pyridinium p-toluenesulfonate gave 4a (1.51 g, 7.2 mmol) in 89% yield. A hexane solution of n-BuLi (1.5 M, 4.0 mL, 6.0 mmol) was added to a solution of 4a (0.42 g, 2.0 mmol) in dry THF (10 mL) under argon atmosphere at -78 °C. The resulting red solution was stirred for 5 h at the same temperature and gradually warmed up to 0 °C. Aqueous workup followed by purification with silica gel column chromatography gave (E, -E)-2-methyl-3,5-undecadiene (0.29 g, 89%; Table I, run 1).

The conjugated dienes with trialkylstannyl group 6 have not been easily available in spite of a high potential value for organic synthesis.¹² The above described procedure provides a novel method to these dienes as shown in Scheme II. Yields of stannane 6 are good, but the stereoselectivities are moderate as summarized in Table II.

Remarkably, (E,E)-dienes 5 stereoselectively prepared in high yields irrespective of the stereochemistry of the starting materials 4. Instead of THP ether 4, methoxymethyl ether (MEM ether) also gave good results.¹⁴ A

treatment of free alcohol 3 with lithium reagents also gave dienes in good yields via lithium alkoxide, but the stereoselectivity is not so high.¹⁵

Stereoselective formation of dienes can be explained: (1) Rapid nucleophilic attacks of a lithium reagent to s-trans conformers of (E)- and (Z)-4 produce 7 and 8, respectively.¹⁶ (2) Both 7 and 8 afford selectively the (E,E)-diene 5 by perpendicular elimination of lithium tetrahydropyranyl oxide (Scheme III).

(E)-Alkenes are also obtained by the analogous reaction between lithium reagent with THP ether of 1-alken-3-ols. For example, (E)-6-pentadecene was obtained by the reaction of n-BuLi with 3-(tetrahydropyranyloxy)-1-undecene, but the reaction was very slow (56% yield after 4 days of stirring at room temperature) in comparison with THP ether of dienyl alcohol. Formation of conjugated dienes from THP ether of 1,4-alkadien-3-ols is conceivable, but this procedure was not promising, since the starting material, the THP ether of 1,4-alkadien-3-ols, was unstable, and the proton on C-3 was easily abstracted by the action of *n*-BuLi, giving a complex mixture.

Registry No. (E)-1, 16503-25-6; (Z)-1, 10033-99-5; (E)-3a, 109928-88-3; (Z)-3a, 109928-89-4; 3a (methoxymethyl ether), 109929-21-7; (E)-3b, 109928-90-7; (Z)-3b, 109928-91-8; (E)-3c, 69514-47-2; (Z)-3c, 69514-48-3; (E)-3d, 88920-69-8; (Z)-3d, 109928-92-9; (E)-4a, 109928-93-0; (Z)-4a, 109928-94-1; (E)-4b, 109928-95-2; (Z)-4b, 109928-96-3; (E)-4c, 109928-97-4; (Z)-4c, 109928-98-5; (E)-4d, 109928-99-6; (Z)-4d, 109929-00-2; (E,E)-5a $(R^3 = n-Bu)$, 109929-01-3; (E,E)-5a $(R^3 = sec-Bu)$, 109929-02-4;

⁽¹¹⁾ Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1963, 1, 18. (12) Seyferth, D.; Pornet, J.; Weinstein, R. M. Organometallics 1982, 1, 1651. Hosomi, A.; Saito, M.; Sakurai, H. Tetrahedron Lett. 1980, 21, 3783. Oppolzer, W.; Burford, S. C.; Marazza, F. Helv. Chim. Acta 1981, 63, 555. Naruta, Y.; Nagai, N.; Arita, Y.; Maruyama, K. Chem. Lett. 1983, 1683.
 Naruta, Y.; Nishiguchi, Y.; Maruyama, K. Chem. Lett. 1986, 1703.
 Jones, M.; Kitching, W. J. Organomet. Chem. 1983, 247, C5.
 (13) Tamborski, C.; Ford, F. E.; Soloski, E. J. J. Org. Chem. 1963, 28, 077

^{237.}

⁽¹⁴⁾ Methoxymethyl ether of 6-methyl-1,3-heptadien-5-ol (3a) and lithium diethylamide gave diethyl[(E,E)-6-methyl-2,4-heptadienyl]amine in 71% yield (0 °C, 6 h; Table I, run 7).

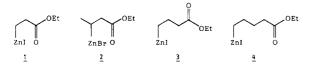
⁽¹⁵⁾ A treatment of 6-methyl-1,3-heptadien-5-ol (3a) with 4 equiv of n-BuLi gave a mixture of (E, \vec{E}) -2-methyl-3,5-undecadiene and (\vec{E}, Z) -2-methyl-3,5-undecadiene in 79% yield. The ratio of these stereoisomers was 72:28 (E, E/E, Z).

⁽¹⁶⁾ The reactions of alkyllithium or lithium amide with 1,3-butadiene are reported: Schue, F.; Bywater, S. Bull. Soc. Chim. Fr. 1970, 271. Glaze, W. H.; Hanicak, J. E.; Moore, M. L.; Chaudhuri, J. J. Organomet. Chem. 1972, 44, 39. Takabe, K.; Katagiri, T.; Tanaka, J. Tetrahedron Lett. 1972, 4009. Imai, N.; Narita, T.; Tsuruta, T. Tetrahedron Lett. 1971. 3517.

(E,E)-5a $(R^3 = NEt_2)$, 109929-06-8; (E,E)-5a $(R^3 = SiMe_2Ph)$, 109929-08-0; (E,Z)-5a $(R^3 = n$ -Bu), 109959-45-7; (E,E)-5b $(R^3 =$ *n*-Bu), 109929-03-5; (E,E)-5b (R³ = *t*-Bu), 109929-04-6; (E,E)-5b $(\mathbf{R}^3 = \text{SiMe}_2\text{Ph}), 109929-09-1; (E)-5c (\mathbf{R}^3 = n-Bu), 78500-35-3;$ (E)-5c $(R^3 = NEt_2)$, 101456-04-6; (E)-5c $(R^3 = SiMe_2Ph)$, 109929-10-4; (E)-5d ($\mathbb{R}^3 = n$ -Bu), 109929-05-7; (E)-5d ($\mathbb{R}^3 = \mathbb{N}Et_2$), 109929-07-9; (E)-5d (R³ = SiMe₂Ph), 109929-11-5; (E,E)-6a, 109929-12-6; (Z,E)-6a, 109929-13-7; (E,E)-6b, 109929-14-8; (Z,-E)-6b, 109929-15-9; (E)-6c, 109929-16-0; (Z)-6c, 109929-17-1; (E)-6d, 109929-18-2; (Z)-6d, 109929-19-3; Br(CH₂)₂Br, 106-93-4; MeCH(CHO)Me, 78-84-2; n-BuLi, 109-72-8; sec-BuLi, 598-30-1; t-BuLi, 594-19-4; Et₂NLi, 816-43-3; PhMe₂SiLi, 3839-31-4; Me₃SnLi, 17946-71-3; octanal, 124-13-0; acetone, 67-64-1; cyclohexanal, 2043-61-0; pyridinium p-toluenesulfonate, 24057-28-1; (E)-6-pentadecene, 74392-31-7; 3-(tetrahydropyranoxy)-1-undecene, 109929-20-6.

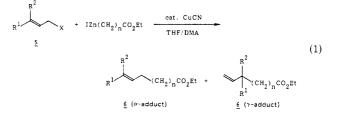
Toshiyuki Ishii, Naoji Kawamura Seijiro Matsubara,* Kiitiro Utimoto

Department of Industrial Chemistry Faculty of Engineering Kyoto University Yoshida, Sakyo Kyoto, 606, Japan


Sinpei Kozima,* Torazo Hitomi

School of Liberal Arts and Sciences Kyoto University Yoshida-nihonmatsu, Sakyo Kyoto, 606, Japan Received May 13, 1987

Unsaturated Ester Synthesis via Cu(I)-Catalyzed Allylation of Zinc Esters


Summary: CuCN-catalyzed allylation of ethyl β -(iodozincio)propionate (1), ethyl β -(bromozincio)butyrate (2), ethyl γ -(iodozincio)butyrate (3), and ethyl δ -(iodozincio)pentanoate (4) with allylic halide or tosylate provides ethyl 5-hexenoates, ethyl 6-heptenoates, and ethyl 7-octenoates in high yields. Regioselectivity of the allylation and the reaction of 3 with propargyl tosylate are also discussed.

Sir: Recently we have shown that β -zinc ester 1 and γ -zinc ester 3 can be generated by a direct metalation of the corresponding iodides with Zn-Cu.¹ This method was found general for the generation of the higher homologues (δ - (4), ϵ -, and ζ -zinc esters) and secondary C-Zn derivatives (e.g., 2). Here we report allylation of 1-4, which, in

principle, coupled with a vinylation,² might constitute a general entry to the synthesis of unsaturated acid derivatives with olefin at any desired position more remote than the γ -position of carbonyl (eq 1).³

Owing to low nucleophilic reactivity, allylation has been successful for some organozincs, which possess a polarized

C-Zn bond: direct allylation of (trifluoromethyl)zinc bromide⁴ and Pd(0)-catalyzed allylation of α -zinc ester⁵ and phenylzinc chloride.⁶ Making contrast to the latter two examples, the Pd(0)-catalyzed allylation of **3** resulted in a self-coupling, and no expected product **6** was detected (eq 2).⁷ However, cuprous cyanide⁸ was found to nicely

$$Ph \longrightarrow OAc + IZn(CH_2)_3CO_2Et \xrightarrow{Pd(PPh_3)_4} Ph \xrightarrow{Ph} (76\%)$$

$$(2)$$

$$Ph \longrightarrow Ph \longrightarrow (76\%)$$

$$Ph \longrightarrow Ph \longrightarrow (76\%)$$

$$(2)$$

$$Ph \longrightarrow Ph \longrightarrow EtO_2C(CH_2)_6CO_2Et$$

$$(6\%) \qquad (38\%)$$

catalyze the allylation of zinc esters 1-4 (eq 1).⁹ Results are summarized in Table I.¹⁰ The allylation was undertaken either at 60 °C for 1 h (conditions A) or at room temperature overnight (conditions B). Under the conditions B, the zinc esters 1-4 were filtered under nitrogen to remove an excess of Zn-Cu before treating with 5. Without the filtration, a homocoupling of allylic halide becomes a serious side reaction. Tosylates were directly used after preparation by treatment of the corresponding alcohols with 1 equiv of n-BuLi (n-hexane solution) in THF at -78 °C and then with 1 equiv of tosyl chloride at 0 °C. These tosylates readily undergo an exchange reaction with chloride ion at an ambient temperature, and an allulation agent in these experiments is a composite of a tosylate and a chloride (vide infra). The yields of 6 are generally high, irrespective of the wide structural variety of 5. In the absence of CuCN, the yield of 6 was low (e.g., ethyl 3-(2'-cyclohexenyl)propionate in 33% yield at 60 °C for 2 h, cf. entry 3).

The regioselectivity for the unsymmetrical 5 was rather poor except for the cases in entries 14 and 15 and insensitive to the change in reaction conditions (entries 5 vs. 6), the kind of leaving groups (entries 6–8), and the structures of 5 and zinc esters. Generally the nucleophile was preferentially introduced to the γ -position. This general trend is apparent especially by a comparison of a pair of results (crotyl vs. α -methallyl tosylates, entries 10

(7) Similar homocoupling was reported for Grignard reagents, allylic halides, and FeCl₃, CoCl₂, NiCl₂, or CuCl₂: Ohbe, Y.; Matsuda, T. Tetrahedron 1973, 29, 2989.

rahedron 1973, 29, 2889.
(8) For CuCN-mediated (stoichiometric) allylation of 4-pentenylzinc, see: Knochel, P.; Normant, J. F. Tetrahedron Lett. 1986, 27, 4427, 4431.
(9) One example of allylation of methyl α-methyl-β-(halozincio)-

propionate was reported without experimental details: Nakamura, E.; Sekiya, K.; Kuwajima, I. *Tetrahedron Lett.* **1987**, *28*, 337. (10) The reaction was performed as follows (entry 3, Table I): To a

(10) The reaction was performed as follows (entry 3, 1able 1): 10 a solution of 2-cyclohexenyl tosylate (1.2 mmol, see the text) were successively added 18 mg (0.2 mmol) of CuCN in 2 mL of dry THF and a solution of 1, which had been prepared by heating a mixture of 1.5 mmol of ethyl 3-iodopropionate and 2.3 mmol of Zn-Cu in THF (4 mL)-DMA (N,N-dimethylacetamide, 2.2 mmol) at 60 °C for 3 h under nitrogen. The mixture was stirred at 60 °C for 1 h. After dilution with ether, washing with aqueous NaHCO₃, and drying over MgSO₄, followed by evaporation of the solvents, the residue was purified by column chromatography over silica gel (hexane-ether gradient) to provide ethyl 3-(2'-cyclohexenyl)-propionate in 82% yield based on 2-cyclohexenol.

0022-3263/87/1952-4418\$01.50/0 © 1987 American Chemical Society

⁽¹⁾ Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Tetrahedron Lett. 1985, 26, 5559.

⁽²⁾ Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Tetrahedron Lett. 1986, 27, 955.

⁽³⁾ The chemistry of ϵ - and ζ -zinc esters is very similar to that of 1-4, and hence only 1-4 were treated in this manuscript.

⁽⁴⁾ Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832.
(5) Baldrini, G. P.; Mengoli, M.; Tagliavini, E. Tetrahedron Lett. 1986, 27, 4223.

⁽⁶⁾ Chatterjee, S.; Negishi, E. J. Org. Chem. 1985, 50, 3406.